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ABSTRACT

In many real-world recommender and search systems, presenting
a ranked list of relevant items is crucial for increasing user engage-
ment or revenue. Off-Policy Evaluation (OPE) of ranking policies
is thus gaining growing attention, as it enables offline evaluation
of new policies using only logged data. Inverse Propensity Scoring
(IPS) is a prevalent approach in (general) OPE. Unfortunately, a
naive application of IPS in the ranking setting often faces a critical
variance issue due to the combinatorially large action space and the
resulting huge importance weight. To reduce the variance, existing
estimators introduce some user behavior assumptions to eliminate
unnecessary importance weight. However, a strong assumption
may in turn incur serious bias, making “assumption selection” a
challenging problem. To tackle this problem, we propose the Adap-
tive IPS estimator, which interpolates among the existing estimators.
ATPS does this by using a class of importance weights that include
those of existing estimators. By tuning the interpolation hyper-
parameters of the importance weight in a data-driven way, the
proposed estimator adaptively reduces the variance of IPS without
incurring high bias. The empirical results demonstrate that the pro-
posed estimator works reliably well across a range of user behavior
models, including stochastic ones.
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1 INTRODUCTION

Interactive bandits and reinforcement learning (RL) policies are
widely used in ranking systems, e.g., music streaming, search, and
online advertising. While the logging or behavior policy presents
relevant items to users, it also collects logged data valuable for eval-
uating and redesigning the ranking systems. For example, a music
streaming system records the ranked list of songs it presented (i.e.,
playlist) and to which songs the user listened. This gives the system
a chance to redesign the policy for a more relevant recommendation.
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Moreover, logged data are also beneficial for Off-Policy Evaluation
(OPE) [14, 15], which aims to accurately evaluate the performance
of counterfactual or evaluation policies using only offline logged
data, without interacting with actual users. OPE is of great practical
interest, as it can be a safe and costless substitute for online A/B
tests [3, 6]. However, exploiting the logged data is challenging, as
the logs are inherently biased due to the distribution shift between
the behavior and evaluation policies.

A dominant approach to deal with the distribution shift in OPE
is to use the importance sampling technique referred to as Inverse
Propensity Scoring (IPS) [13, 18]. IPS enables an unbiased estima-
tion of the policy performance, thus is widely used in (general)
contextual bandit settings. However, a critical limitation of IPS is
that its variance can be high when the action space is large [16].
Particularly in the slate contextual bandit setting where we present
a ranked list of items (i.e., actions) to the users, IPS often strug-
gles with extremely high variance due to the combinatorially large
action space. To reduce the impractically large action space to a
tractable one, existing estimators introduce some user behavior as-
sumptions. For example, Li et al. [10] assumes that a user interacts
with the presented actions independently at each position. Since
this independence assumption confines the action-reward depen-
dency within the same position, the resulting Independent IPS (IIPS)
greatly reduces the variance of IPS by discarding the irrelevant
importance weight. However, when the true user behavior is more
complex, IIPS yields serious bias. In response to the bias issue of
IIPS, Mclnerney et al. [11] proposed Reward interaction IPS (RIPS)
based on the cascade assumption. The cascade assumption assumes
that a user interacts with actions one-by-one from the top posi-
tion [5]. RIPS is unbiased in more cases than IIPS, while reducing
the variance of IPS. However, when the cascade assumption does
not hold, RIPS still incurs serious bias in estimation, as we demon-
strate in the experiment in Section 4. These bias-variance tradeoffs
of existing estimators often make practical applications of OPE
quite challenging, as the true user behavior model is usually un-
known. Moreover, when the user behavior models are determined
by chance for each user, a suitable estimator and assumption are
difficult to identify.

Contributions. To safely and adaptively achieve a reasonable
bias-variance tradeoft, this paper proposes a new OPE estimator that
interpolates among the existing estimators. Our key idea in enabling
the interpolation of the existing estimators is to leverage the nested
structure among the importance weights of IPS, RIPS, and IIPS.
Specifically, we define a class of importance weights based on the
nested structure to include the importance weights of the existing
estimators with some built-in hyperparameters. By tuning these
hyperparameters in a data-driven manner, the resulting Adaptive
IPS estimator is able to balance the bias-variance tradeoff without
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any prior knowledge about the (true) user behavior model. Finally,
the empirical results demonstrate that AIPS is able to reduce the
variance of IPS under relatively simple user behavior models (e.g.,
independent), while also avoiding high bias under complex and
stochastic user behavior models.

Our contributions are summarized as follows.

e We propose AIPS, which adaptively interpolates among the
existing estimators to balance both bias and variance.

o We empirically verify that the proposed estimator works
stably well across various user behavior models, including
stochastic ones.

2 PRELIMINARIES

This section describes the problem setup and summarizes the exist-
ing estimators and their statistical properties.

2.1 Setup

We consider a slate contextual bandit setting. Let x € X € R? be
a context vector (e.g., user demographics) and A be a finite set
of discrete actions (e.g., songs). Let a = (ay,aa,...,4;,...,ar) be
a slate action vector (e.g., a ranked list of songs) where L is the
length of a slate (slate size). Following Kiyohara et al. [7], we call
a function 7 : X — A(AL) a factorizable policy. Given context
x € X, it chooses an action at each slot (a;) independently, where
n(alx) = ]_[lL:1 7 (ay|x) is the probability of choosing a slate action
vector a. In contrast, we call 7 : X — A(IIL(A)) a non-factorizable
policy, where ITy (A) is a set of L-permutation of A. Comparing two
policies, a factorizable one may choose the same action more than
twice in the slate, while a non-factorizable one chooses a slate action
without any duplicates among slots (i.e., V1 < k <[ < L, ag # ay).
Let r = (r1,r2,...,71,...,rL) be a reward vector, where r; is a
random variable representing the slot-level reward observed at slot
I (e.g., whether the recommended song at slot [ results in a click).
We consider the following weighted sum of slot-level rewards as
an aggregated reward metric called slate-level reward [7, 11]:

L
I=1

where ; denotes a non-negative weight for slot [. Note that, we use
q(x,a) = Ep(r|x,a) [r*|x, a] to denote the slate-level mean reward
function and q;(x, @) == Ep(y|x,q) [71|x, a] to denote the slot-level
mean reward function.

Let D = {(x(’.),a(i),r(i))};’:1 be logged bandit data with n
independent observations. aD is a vector of discrete variables
indicating which slate action is chosen for individual i. x() and
r denote the context and reward vectors observed for i. We
assume that the logged data are generated by a behavior policy m:

n
~ I_[P(x(i))ﬂo(a(i) IxD)p(rDxD g®).

i=1

{(x(i),a(i),r(i))}?zl

Throughout the paper, we assume that all confounders and slot-
level rewards (ry,...,rp) are observed, and the logged data have
full support over slate actions (i.e., o (a|x) > 0,V(x, a)).

For a function f(x,a,r), we use

Enlf(x,a,r)] = F(xD,a® p)

(xD D rDyeD
to denote its empirical expectation over n observations in D. We
also let ED [] = Enlr_zzlp(x(i))ﬂo(a(i) |x(i))p(r(i) |x(,a(®) [] Regard—
ing the action and reward vectors (a, r), we use the following nota-
tions.

e partial set of slate actions: ay,.j, ==
e partial set of slate rewards: r; ,;, :=

alz—li alz)
rlz—b rlz)

(ap, ap415-- -
(rll, r11+1, ey

2.2 Estimation Target
We are interested in estimating the following policy value of any
given evaluation policy & using only logged data D:

V(r) = IE'p(x);r(a|x)p(r|x,a) [r1.

Estimating the policy value before deploying « in an online envi-
ronment is beneficial, as it does not require huge implementation
costs of A/B tests [14] and mitigates the risks of damaging user
satisfaction [3]. However, deriving an accurate estimation is also
challenging due to the distribution shift between the evaluation (i)
and behavior (1p) policies.

2.3 Existing Estimators

Here, we review the related estimators, their user behavior assump-
tions, and their statistical properties.

Inverse Propensity Scoring. IPS uses the importance sampling
technique to deal with the distribution shift as follows.

ﬂ(dlx)
When the policy is factorizable, IPS is also described as follows.

n(ay | x)
(ﬂ ol x))zam}

I=

Vips (1; D) = E

Vips (73 D) = Epy

IPS is unbiased and consistent without any user behavior assump-
tions. However, it suffers from impractically high variance when
the action space (|AL| or [IIf (A)|) is large [7, 10, 11, 19].

Independent Inverse Propensity Scoring. IIPS assumes the inde-
pendence assumption, where a user interacts with actions indepen-
dently across slots [7, 10].! This means that the reward observation
at each slot depends only on the corresponding action and its posi-
tion, but not the other actions presented in the same slate. Under
this assumption, the slot-level mean reward function is reduced to

the following.
q1(x, @) =Bp(ryx,ap) [11 | %, a1]-

Based on the above condition, IIPS corrects the distribution shift
only at the corresponding position (I) for each reward (r;) as follows.

Vips (77; D) = Epy

The independence assumption corresponds to the item-position model of [10].



where 7(a; | x) = X4 n(alx) ]I(a; = qaj) is the action choice
probability at slot I. ITPS drastically reduces the variance of IPS,
while remaining unbiased under the independence assumption.
However, when this assumption does not hold, IIPS incurs serious
bias in estimation [7, 11].

Reward interaction Inverse Propensity Scoring. RIPS assumes the
cascade assumption, i.e., a user interacts with actions sequentially
from the top position to the bottom [5]. Therefore, the reward ob-
served at each slot (r;) is dependent only on actions and rewards at
higher positions in a ranking (aj,1., r41.1)- Since r; is independent
of the lower positions (/+1 : L), the slot-level mean reward function
results in the following.

q1(x.@) = Ep(r)|x,ar0r100) 71 | X @171 1]

Note that, the cascade assumption includes the independence as-
sumption as a special case.

Exploiting the cascade assumption, RIPS estimates the policy
value as follows.

L
5 ”(alzl | x)
Vrips (13 D) = E — o
" ; 770(“1:1 | x)
L (1
_E Z 1—[ me(ay | x,a1.0—1) ar
" =1 \I'=1 mp(ap | %, ay.p_q) r-

RIPS is unbiased under the cascade assumption, while also reducing
the variance of IPS. However, when the cascade assumption does
not hold, its bias becomes high, as we will empirically verify in the
experiment in Section 4.

2.4 Limitation of Existing Estimators under
Agnostic and Stochastic Behavior Models

So far, we have seen that the existing estimators exhibit different
bias-variance tradeoffs depending on their user behavior assump-
tions. When the (true) user behavior model is deterministic and
known a priori, practitioners can pick the most suitable estimator
based on the user behavior assumption. However, the true user
behavior often follows an unknown probability distribution — for
example, users may follow either the cascade assumption or the
independence assumption with probability 0.8 and 0.2 in platform
A, while users do not follow any assumptions in platform B. In
such cases, applying low-variance estimators such as IIPS and RIPS
can be risky, as they may aggravate the estimation error when the
assumption does not hold. In fact, the empirical results of Kiyohara
et al. [7] indicate that a suitable estimator and assumption can
change depending on the (true) user behavior model in the data
generation process. This motivates us towards an adaptive OPE
estimator that can interpolate among IPS, RIPS, and IIPS to better
balance the bias-variance tradeoff in a data-driven way.

3 ADAPTIVE OFF-POLICY EVALUATION

In this section, we propose a new OPE estimator called Adaptive
Inverse Propensity Scoring (AIPS).

Proposed Method. Our key insight in deriving a new estimator
is that the action choice probability of an arbitrary policy can be

Table 1: Correspondence among the interpolation hyperpa-
rameters of AIPS and the existing estimators

estimator‘ assumption ‘A ATt

IPS none 1 1 1
RIPS cascade 1 1 0
IIPS independence | 1 0 0

expressed by the following nested structure.

n(alx) = n(arlx)7(ar—1lx, ap) m(apr.p|x, ary). (1)

7(ay|x)

Leveraging this structure, AIPS is able to interpolate among IPS,
RIPS, and IIPS with a class of importance weights, which include
the importance weights of the existing estimators as follows.

Vamps (1; D)

=E,

L

Z wi (x> a; A)lel—l (x’ a; A_)Wl+1:L (x’ a; /1+) alrl:| >

=1

where we define each importance weight as?:

7(ay|x)

7o(a|x)

(= An(alx) + (1 = N)mo(ay|x) )
7o (ag|x)

7'[((11:[_1|x, al)

mo(ay.—1lx, ap)

wi(x,a; 1) == A +(1-2)

wi_1(x,a; A7) = A7 +(1-47)
/1+) = /1+ 7T((1[+1:L|x,(11:l) + (l _ /1+)

7o (al+1:L |, al:l)
where 1 > A > A~ > A% > 0 are the interpolation hyperparameters.
Table 1 shows the correspondence among AIPS and the existing
estimators. When A* = 1, AIPS preserves the original importance
weight to correct the distribution shift. On the other hand, when
A* =0, AIPS eliminates the importance weight and ignores the dis-
tribution shift for the variance reduction purpose. More generally,
when the value of 1* is large, AIPS leads to a low-bias but high-
variance estimator, while a small value of A* leads to a high-bias
but low-variance estimator.

wi. (%, a;

Hyperparameter Tuning. To adaptively balance the bias-variance
tradeoff, we minimize the following estimated MSE.

MSE(V, (-, 1*))

N . 2 NN
= (Bpp [ AD] = Bgpe [Firs ()]) + 07 (V2 4))

where 7 is a hyperparameter. E 5, [] denotes the bootstrapped
mean. The first and second terms are the estimated bias and vari-
ance, respectively. We estimate the bias by substituting the true
policy value V() with E [Vips(-)], since V is unobservable and
Vips is unbiased under any user behavior model. However, as Vips
is vulnerable to variance, this procedure tends to overestimate bias.
Therefore, we use 7 to balance the bias-variance tradeoff. We com-
pare several choices of 1 in the following experiment.

2These importance weights coincide with the arithmetic correction of [12].



Table 2: Estimators’ mean-squared-error (MSE), squared bias, and variance under a single user behavior model (i.e., y = 1.0)

standard cascade independent
OPE Estimators MSE squared bias variance MSE squared bias variance MSE squared bias variance

IPS 0.400" 0.004 0.396 0.368 0.004 0.364 0.365 0.004 0.361

RIPS 1.8041 1.598 0.206 0.160" 0.004 0.156 0.150° 0.004 0.146

IIPS 6.943" 6.822 0.121 1.4747 1.435 0.039 0.019" 0.006 0.013

AIPS (7 = 1.0) 0.461 0.005 0.455 0.332° 0.006 0.326 0.172° 0.006 0.166
AIPS (5 = 2.0) 0.514 0.037 0.477 0.347° 0.018 0.329 0.120° 0.007 0.113
AIPS (7 = 3.0) 0.568 0.084 0.484 0.363° 0.033 0.329 0.092° 0.009 0.084
AIPS (oracle) 0.183" 0.085 0.098 0.245° 0.002 0.243 0.217° 0.017 0.200

Note: A lower value is better for all metrics. The red” fonts represent the most accurate OPE estimator. The green® fonts represents the OPE
estimators that improve MSE upon IPS. The blue' fonts represent the OPE estimators that aggravate the MSE of IPS more than twice.

4 SYNTHETIC EXPERIMENT

This section compares AIPS with the existing estimators.> Our
synthetic experiment uses OpenBanditPipeline [14]*. The omitted
experimental details are provided in Appendix.

4.1 Setup

Basic Setting. We collect the size n = 1,000 of the logged data
using a factorizable policy. It chooses each slot-level action inde-
pendently as a; ~ 7(a;|x), where we set |A| = 3.> We also set
L=6and a; = 1,Vl =1,...,L. The slot-level reward is continuous,
which is sampled from a normal distribution as r; ~ N (g;(x, @), 62),
where q;(x, a) and o are the slot-level mean reward function and
the noise level of the rewards, respectively. The following describes
how g;(x, a) is defined in various user behavior models.

User behavior models and rewards. We use standard, cascade,
and independent user behavior models, following Kiyohara et al.
[7]. To model each user behavior, we first introduce the following
general form of the slot-level mean reward function:

q(x,a) = q(x, a) + F(x, a),

where §;(x, aj) is the base reward function, which is determined
only by a;. In contrast, F(x, a) is dependent on the whole slate
action a. F(x, a) models the different action-reward dependencies
of the user behavior models as follows.

2k+1 G(k, 1) (standard)
F(x,a) = { Y <1 G(k,I) (cascade) ,
0 (independent)

where G(k, I) is the effect of the action presented at slot k on the slot
1. Specifically, when the user behavior model is standard, q; depends
on the whole slate (a). In contrast, q; depends only on the higher
slots (a;.;) under the cascade behavior model, while g; is dependent
only on the corresponding slot (a;) under the independent one. To
see how the population of each user behavior model affects the
performance of each OPE estimator, we let y of data sampled from

3The code is provided at: https://github.com/aiueola/kdd-uc-2022-adaptive-ips.
4https://github.com/st-tech/zr-obp

5Since we are using a factorizable policy as 7, the behavior policy is able to choose
the same action more than twice in a slate.

the target user behavior model, and (1 — y) of data sampled evenly
from the other two. For example, when y = 0.4 and the target is
standard, 40% of the data is based on standard, 30% is on cascade,
and 30% is on independent. We vary y € {0.0,0.2,...,1.0} for each
target user behavior model.

Compared estimators. We compare IPS, IIPS, RIPS, and AIPS
(our proposal). Note that, IPS is unbiased under all user behavior
models. RIPS is unbiased under the cascade and independent, while
TIPS is unbiased only under the independent one. We use the true
action choice probability of 7, to define the compared estimators.

For AIPS, we select each A* from A := {0.0,0.1,...,1.0} in the
order of A*, 17, 1.6 We bootstrap data 100 times to derive the boot-
strapped mean. As discussed, the hyperparameter tuning method
tends to overestimate bias due to the variance of Vipg(-). Therefore,
we compare AIPS with n € {1.0,2.0,3.0}. We also compare AIPS
(oracle), which is tuned with the bias estimated by the true policy
value (ie., V(+)).

4.2 Results and Discussions

We conduct the experiment with 1000 different seeds and calcu-
late the mean-squared-error (MSE) as the estimators’ performance
metric. We also decompose MSE into bias and variance for analysis.

How estimators perform differently under the single user be-
havior setting? We first validate the performance of the compared
estimators under a single user behavior model (i.e., y = 1.0). Table 2
summarizes the estimators’ performance metrics under each user
behavior model. The result suggests that the existing low-variance
estimators (i.e., RIPS and IIPS) enable the most accurate estimation
when the user behavior assumption holds. However, when the as-
sumption does not hold, those estimators produce extremely high
bias, aggravating the MSE of the baseline estimator (i.e., IPS) more
than twice. In contrast, AIPS do not incur such high bias, ensuring
a reliable estimation even under the most complex user behavior
model (i.e., standard). Moreover, when the true user behavior model
is less complex (in particular in the independent case), AIPS suc-
cessfully reduces the variance of IPS. These favorable performances
are due to the adaptive interpolation of AIPS.

®The order is based on the inner-slate action dependency described in Eq. (1).
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Figure 1: Estimators’ performance comparison with the varying probabilities (y) of the standard behavior model
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Figure 3: Estimators’ performance comparison with the varying probabilities (y) of the independent behavior model

Note: The shaded regions in MSE plots show the bootstrapped 95% confidence intervals. We report the result of 7 = 1.0 for AIPS. Note that, in Figure

2, TIPS is out of range in the plots of MSE and squared bias due to high bias.

However, the results also indicate that AIPS has room for im-
provement with respect to hyperparameter tuning. First, we observe
that the variance reduction of AIPS is smaller than that of RIPS and
IIPS. In particular, the variance of AIPS is more than twice of that
of RIPS in the cascade case, suggesting that AIPS is too conserva-
tive in interpolating low-variance estimators. We hypothesize that
this observation is due to the overestimation of bias in the tuning
procedure. To verify this hypothesis, we also compare AIPS with
the varying values of 1. We observe that a large value of n reduces
variance when the true user behavior is simple (i.e., independent).

However, the result also indicates that a large value of 5 can increase
both bias and variance when the true user behavior is relatively
complex, as a large value of 7 makes AIPS too myopic in variance
reduction. These observation suggests that hyperparameter tun-
ing is challenging due to the uncertainty in the bias estimation.
Finally, the oracle tuning result (i.e., AIPS (oracle)) suggests that
AITPS potentially reduces MSE by a larger margin than the existing
estimators when hyperparameter tuning works successfully. We
leave the development of reliable hyperparameter tuning methods
for future work.



How estimators perform when the user behavior models are
stochastic? Next, we investigate the situation where a population
of users follows complex user behavior models, but another popula-
tion of users follows simple user behavior models, following some
unknown probability distribution. This situation is more practically
relevant than a single user behavior case, but is under-explored
in the existing OPE literature in the ranking setting. Figure 1-3
illustrate how the estimators’ performance metrics change with
the varying probabilities (y) of the target user behavior models.
Remarkably, the result demonstrates that the estimation error of
the low-variance but biased estimators increases more than pro-
portional as the probability of the complex user behavior models
increases. This is because the probability of the simple user behav-
ior models also decreases at the same time as the increase of the
complex user behavior models. Therefore, assuming a user behavior
assumption might be risky in the stochastic user behavior case, as
it potentially leads to an extremely inaccurate OPE estimation. In
contrast, we observe that AIPS is able to reduce the variance of IPS
when the independent user behavior model occupies a certain prob-
ability (i.e., y > 0.6), without incurring high bias under the complex
user behavior models (i.e., standard and cascade). We highlight that
our proposed estimator’s smooth interpolation among the existing
estimators enables a reliably accurate estimation across various
situations, making the practical application of OPE more tractable.

5 RELATED WORK

OPE is of great practical relevance in recommender systems, as it
enables the performance evaluation of counterfactual policies using
only logged data, without interacting with users in the field [6, 8,
15, 17]. Especially, the single item (action) recommendation set-
ting referred to as (general) contextual bandit has extensively been
studied [3, 4, 9, 16]. Direct Method (DM) [1], IPS [13, 18], and Dou-
bly Robust (DR) [2] are the three prevalent methods. DM uses a
machine learning model to estimate the mean reward function
(q(x, @)). Then, it takes the expectation of the estimated reward
(G(x, a)) over the evaluation policy. Although DM is reasonably
accurate when ¢ is accurate, DM is vulnerable to the bias caused
by model-misspecification [2]. In contrast, IPS is a model-free ap-
proach, which exploits the importance sampling technique to cor-
rect the distribution shift. IPS is unbiased, but can suffer from high
variance [2]. DR is a hybrid of DM and IPS, which uses the predicted
reward as a control variate and performs importance weighting
only on the residual of the estimation. DR usually reduces the vari-
ance of IPS while remaining unbiased. However, DR can still incur
high variance when the action space is large [16].

In the slate contextual bandit setting where we present a ranking
consisting of several items (actions) to users, OPE faces the chal-
lenges of a combinatorially large action space. Specifically, naive
applications of IPS often face extremely high variance [7, 10, 11, 19].
To tackle the variance, existing work has introduced some user
behavior assumptions to reduce the combinatorial action space to
a tractable one. In particular, IIPS [10] is based on the indepen-
dence assumption, which assumes that a user interacts with actions
independently across slots. Under this assumption, the reward ob-
served at each slot depends only on the corresponding action at
the same position. Therefore, IIPS is able to ignore the difference

in actions presented in the other slots, leading to a significant vari-
ance reduction compared to IPS. While IIPS is unbiased when the
independence assumption holds, however, this strong assumption
generally does not hold in real world data, resulting in a serious
bias [7, 11]. RIPS [11] balances both bias and variance by assuming
the cascade assumption, i.e., a user interacts with actions one-by-
one from the top position [5]. Therefore, the reward observed at
each slot depends only on the actions presented at higher positions,
excluding the action-reward interactions from the lower positions.
RIPS is unbiased under the cascade assumption, which includes the
independence assumption as a special case, while also reducing the
variance of IPS. However, RIPS still incurs bias in estimation when
the cascade assumption does not hold. In addition, RIPS suffers
from a high variance when the slate size is large [7]. To tackle the
latter variance problem, Kiyohara et al. [7] propose Cascade-DR,
leveraging the recursive structure of the cascade assumption. How-
ever, the former bias problem has not been addressed in the existing
literature. Therefore, we are the first to work on the adaptive “as-
sumption selection” problem. In particular, our proposed estimator
adaptively interpolates among the existing estimators, which are
based on the different user behavior assumptions. We highlight
that the smooth interpolation of AIPS enables a reliably accurate
estimation even under the stochastic behavior models, which is
practically relevant but under-explored in the existing literature.

Finally, PI [19, 20] is another OPE estimator in the slate contex-
tual bandit setting. This estimator considers a situation where the
slot-level rewards (r;) are unobservable and only the slate-level
reward (r*) is observed. Therefore, PI is not suitable when the
slot-level rewards are observable, as it discards the information
of slot-level rewards. Moreover, P is also prone to have a serious
bias due to the independence assumption, as empirically verified
in McInerney et al. [11].

6 CONCLUSION AND FUTURE WORK

This paper studied OPE of ranking policies in the slate contextual
bandit setting. In this setting, the existing estimators have relied on
a single and pre-defined user behavior assumption to improve the
variance upon IPS. However, when the assumption does not hold,
the existing low-variance estimators may exacerbate the estimation
accuracy due to catastrophically high bias. To reduce the variance of
IPS without incurring high bias, we developed the assumption-free
estimator called Adaptive IPS based on the interpolated importance
weight. Since AIPS adaptively interpolates among the existing esti-
mators in a data-driven manner, AIPS is able to achieve a moderate
bias-variance tradeoff agnostic to the user behavior models. Finally,
the empirical results indicate that AIPS works stably accurate on
various user behavior models, including the stochastic ones, even
when the other low-variance estimators struggle with high bias.

In future work, we plan to explore a reliable hyperparameter
tuning method for OPE of ranking policies. As discussed, the hy-
perparameter tuning is quite challenging in this setting, as the bias
estimation often suffers from high variance. However, we believe
that a reliable hyperparameter tuning procedure would greatly im-
prove the safety and applicability of OPE of ranking policies in
practical situations.
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A OMITTED EXPERIMENTAL DETAILS

Here, we provide some additional experimental setups omitted in
the main text.

Contexts and Rewards. To generate synthetic data, we first
sample five-dimensional contexts (i.e., d = 5), independently and
normally distributed with zero mean. Then, based on the context x
and the action presented at each slot a;, the base reward function
G1(x, a) is defined as follows.

qi(x,ap) = [9;x+ bal]+,
where we let [z]; := max{z,0}. 0, is a parameter vector sam-
pled from the standard normal distribution. b, is a bias term that
corresponds to action a;.

On the other hand, we use the additive reward function [7] to
model the interaction among slots as G(k,I) = W(ag, a;). W is
|A| X |A| symmetric matrix which defines how an action affects
the reward of the other actions in the same slate. This additive inter-
action simulates the effect of co-occurrence between two actions.

Finally, we set the reward noise as o = 5.0 when sampling the
reward from the mean reward function (g;).

Behavior and evaluation policies. We use the following fac-
torizable policy as the behavior policy.
L L
mp (@) = [ [y (e ap) = [ | softmax (fy (x, ).
=1 =1
where f},(x, a;) = 0, x+ba,. The parameters g, and bg, are sampled
from the standard uniform distribution.
Then, we define the evaluation policy based on the (pre-defined)
behavior policy as follows.
L
Te(x,a) = ]_[ softmax (1 - f, (x, a;) + (1= |A])),
=1
where A € [-1.0,1.0) is a hyperparameter that controls the distri-
bution shift between 7, and 7. A positive value of A leads to an
evaluation policy that is similar to the behavior policy (i.e., small
distribution shift). On the other hand, a negative A leads to an eval-
uation policy that deviates from the behavior policy greatly. We set
A = —5.0 in our experiment.
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